Crystallization mechanism of aluminoferrate glass accompanying a precipitation of nanocrystals of dicalcium ferrite (Ca₂Fe₂O₅) and mayenite (12CaO·7Al₂O₃)

Tetsuaki Nishida,*^a Shiro Kubuki,^a Morihiro Shibata,^a Yonezo Maeda^a and Toyomi Tamaki^b

^aDepartment of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashiku, Fukuoka 812, Japan ^bDepartment of Physics, Faculty of Science, Ochanomizu University, Otsuka, Bunkyoku, Tokyo 112, Japan

Heat treatment of $60\text{CaO}\cdot27\text{Al}_2\text{O}_3\cdot13\text{Fe}_2\text{O}_3$ glass resulted in a precipitation of antiferromagnetic dicalcium ferrite (Ca₂Fe₂O₅) and mayenite (12CaO·7Al₂O₃). The effective magnetic moment of the sample decreased from 2.0 to 1.7 μ_B owing to the precipitation of antiferromagnetic particles. The Mössbauer spectrum of the heat-treated sample consisted of two sextets (magnetic hyperfine structure) which were superimposed on two quadrupole doublets. The sextets were assigned to Fe³⁺ occupying octahedral (O_h) and tetrahedral (T_d) sites in the nanocrystals of dicalcium ferrite with a mean diameter > 10 nm. The quadrupole doublets were assigned to Fe³⁺(T_d) occupying Al³⁺ sites in mayenite particles and the glassy phase. IR transmittance of the sample showed a gradual decrease along with the heat treatment. A Johnson–Mehl–Avrami (JMA) plot from the IR-transmission method yielded activation energies (E_a) of 4.9 ± 0.4 and 4.3 ± 0.4 eV for 60CaO·27Al₂O₃·13Fe₂O₃ and 60CaO·35Al₂O₃·5Fe₂O₃ glasses, respectively. These values are equal to E_a obtained from a Kissinger plot by the DTA method, *i.e.*, 4.2 ± 0.3 and 4.6 ± 0.3 eV, and also to the Al=O bond energy (4.4 eV). These results reveal that crystallization of calcium aluminoferrate glass is triggered by cleavage of Al=O bonds at an early stage in order to form mayenite particles containing Fe³⁺. After a prolonged heat treatment, the relative absorption area of sextets in the Mössbauer spectra increased at the expense of two doublets. This change suggests a migration of Fe³⁺(T_d) from mayenite particles and the glassy phase into dicalcium ferrite particles. JMA and Kissinger plots for iron-free 60CaO·40Al₂O₃ glass yielded E_a values of 5.6 ± 0.4 and 6.0 ± 0.3 eV, respectively, equal to the sum of the Al=O (4.4 eV) and Ca=O bond energies (1.4 eV), indicating simultaneous cleavage of Al=O and Ca=O bonds.

Inorganic glasses are generally prepared by quenching the melt of a reagent mixture composed of metal and non-metal oxides. Glass consists of a homogeneous phase, in contrast to crystalline compounds which consist of several crystalline particles separated by grain boundaries. Physical properties of oxide glasses are closely related with the composition, structure and physical properties of each component. Precipitation of crystalline particles in a homogeneous glassy phase, *i.e.*, a structural change from glass to a glass-ceramic, brings about an increase in the mechanical strength. The size and fraction of the crystalline particles in glass-ceramics can be regulated by changing the temperature and time of heat treatment.

It is expected that oxide glasses containing Fe_2O_3 have ferromagnetic or antiferromagnetic properties when several crystalline particles of 'ferrite' precipitate in a paramagnetic glassy phase. 'Ferrite' is expressed by AFe_2O_4 , $A_2Fe_2O_5$ *etc.*, in which A refers to a divalent metal ion. The magnetic properties of glass-ceramics can be regulated by changing the temperature and time of heat treatment. This can be advantageous for the development of magnetic materials in which magnetic particles of different sizes are randomly dispersed in a homogeneous glassy phase.

It is interesting to study the short-range structure and physical properties of 'new glasses' such as IR-transmitting, electric conducting, and magnetic glasses, because these properties are closely related with the short-range structure. Aluminate glasses are known to show a high optical transparency in the VIS–IR region and may be utilized as IR-transmitting, IR-regulating or optical memory materials, *etc.* Optical transmittance of aluminate glass in the IR region decreases linearly with the degree of crystallization, since incident light is reflected or scattered by the crystalline particles precipitated in the glassy phase. Using a decreasing rate of the IR transmittance (T) and the Johnson–Mehl–Avrami (JMA) equation, the mechanism of crystallization and activation energy (E_a) can be obtained.¹⁻⁴ The JMA equation used in the IR-transmission method, is expressed by

$$\ln\left[-\ln(1-x)\right] = n \ln t + \ln k \tag{1}$$

The volume fraction (x) of the crystalline particles can be approximated by the decreasing rate of T obtained at each stage of heat treatment. The value of n (Avrami index), which reflects the mechanism of crystallization, can be obtained from the slope of the straight line of the JMA plot, *i.e.*, a plot of $\ln[-\ln(1-x)]$ vs. heat treatment time (t). Arrhenius plots of rate constants (k), which are obtained from the intercept of the JMA plot, give E_a .

A Kissinger plot in the differential thermal analysis (DTA) is generally used for estimation of E_a of crystallization. The Kissinger equation⁵ is expressed by

$$\ln \left(T_{\rm c}^2/\alpha\right) = E_{\rm a}/RT_{\rm c} + \text{const.}$$
(2)

in which T_c , α and R are the crystallization peak temperature (in K), heating rate of the sample, and the gas constant, respectively.

The short-range structure of inorganic glasses can be estimated from Mössbauer measurements. As for the structural role of Mössbauer ions in glasses, Nishida *et al.*^{6–11} proposed three experimental rules which are useful for the short-range structural study of glasses, as described below.

(1) A linear relationship exists between the glass transition temperature (T_g) and the quadrupole splitting (Δ) of Fe³⁺ which occupies the sites of either network former (NWF) or network modifier (NWM). The ' $T_g - \Delta$ rule' states that highly distorted structural units (fragments) require a higher thermal energy for cooperative migration or diffusion¹² in a supercooled liquid. A plot of the $T_g vs. \Delta$ of Fe³⁺ gives a straight line with a slope of 680 °C mm⁻¹ s when Fe³⁺ plays the role of NWF at tetrahedral (T_d) sites such as BO₄, AlO₄, GaO₄, VO₄ and SiO₄.⁶⁻¹⁰ The slope of the straight line becomes 260 °C mm⁻¹ s when Fe³⁺ occupies octahedral (O_h) NWF sites, as recently observed in tungstate glasses.¹¹ The slope is even lower, 35 °C mm⁻¹ s, when Fe³⁺ occupies NWM sites, as do alkali metal and alkaline-earth metal ions.⁶⁻⁹ The slope of the straight line in a $T_g vs. \Delta$ plot will be closely related with the chemical bond strength of the structural units. Since tetrahedra generally

have stronger chemical bonds than octahedra, they will undergo a smaller structural change. A small change of Δ , which indicates a small change of the distortion of Fe³⁺–oxygen polyhedra, leads to a large slope of 680 °C mm⁻¹ s.

(2) The Debye temperature (θ_D) which is obtained from low-temperature Mössbauer measurements is useful for determining the site occupation of Mössbauer ions, since θ_D reflects the chemical bond strength, intermolecular forces, degree of molecular packing, *etc.* The value of θ_D is >280 K when Mössbauer ions like Fe³⁺ and Sn⁴⁺ occupy NWF sites, while it is lower than 270 K when they occupy NWM sites.

(3) γ -Ray or neutron irradiation of oxide glasses causes a reduction of Fe³⁺ to Fe²⁺ when iron occupies NWF sites. By contrast, Fe²⁺ is oxidized to Fe³⁺ when it occupies NWM sites.

The present study was carried out in order to investigate the crystallization mechanism of $60\text{CaO}\cdot27\text{Al}_2\text{O}_3\cdot13\text{Fe}_2\text{O}_3$ glass caused by isothermal annealing. X-Ray powder diffraction (XRD) was used in order to determine the crystalline particles precipitated in the glassy phase. Magnetic susceptibility measurements were performed in order to investigate the change of magnetism due to the precipitation of crystalline particles. Mössbauer and FTIR spectra were measured in order to investigate the change of short-range structure such as the coordination number (CN) of Fe³⁺ and Al³⁺ and the symmetry of oxygen polyhedra. An IR-transmission method combined with a JMA plot was used in order to estimate the mechanism of crystallization and E_a , which was also obtained by DTA (Kissinger plot).

Experimental

Calcium aluminoferrate glass with a composition of $60\text{CaO}\cdot27\text{Al}_2\text{O}_3\cdot13\text{Fe}_2\text{O}_3$ was prepared by quenching a melt composed of CaCO₃, Al(OH)₃ and Fe₂O₃ of guaranteed reagent grade. Before melting, the reagent mixture was pulverized thoroughly in an agate mortar and then transferred into a platinum crucible. After fusion at 1550 °C for 2 h in an electric muffle furnace, a homogeneous glass sample was prepared by quenching the melt with ice-cold water (the outside of the crucible was immersed into ice-cold water). The glass sample was dark brown owing to the presence of iron (Fe³⁺).

Iron-57 Mössbauer spectra were measured at room temperature with a 10 mCi $(3.7 \times 10^8 \text{ Bq})^{57}$ Co(Pd) source. A sheet of metallic iron foil (α -Fe) enriched with ⁵⁷Fe was used as the reference for the isomer shift, δ , and for calibrating the velocity scale of the spectrometer and spectral analysis was by a leastsquares method. The FTIR absorption spectra were measured using the conventional KBr disk method, while transmission spectra were obtained using glass samples. Glass transition temperatures (T_{e}) and crystallization peak temperatures (T_{e}) were determined by DTA conducted at a heating rate of 5 °C min⁻¹, using powdered α -Al₂O₃ as the standard. In addition, DTA was conducted at different heating rates in order to determine E_a from a Kissinger plot. XRD patterns were recorded at a scanning rate of $\tilde{2}^{\circ}$ min⁻¹ with Cu-K α radiation. Magnetic susceptibility measurements were conducted using the Faraday method over the temperature range 80-300 K under an external magnetic field of 8 kG, and HgCo(NCS)₄ was used as the calibrant. The effective magnetic moment (μ_{eff}) was calculated from

$$\mu_{\rm eff} = (8\chi_{\rm m}T)^{1/2} \tag{3}$$

in which χ_m and T are the molar magnetic susceptibility and the temperature (in K), respectively.

Results and Discussion

Homogeneous glass samples could be prepared in the $60CaO(40-x)Al_2O_3 \cdot xFe_2O_3$ system when the Fe_2O_3 content

(x) was $\leq 13 \mod \%$. The formation of homogeneous glass samples was confirmed by XRD, as illustrated in Fig. 1(a). The XRD pattern has a halo peak at *ca*. $20-30^{\circ}$, as is generally observed in several oxide glasses with an 'amorphous' structure. Isothermal annealing of the 60CaO·27Al₂O₃·13Fe₂O₃ glass at a temperature close to T_c (783 °C) resulted in precipitation of crystalline particles. XRD patterns of samples heat treated at 750 °C for 2000 and 5000 min are shown in Fig. 1(b) and 1(c), respectively. Several diffraction peaks due to dicalcium ferrite (Ca₂Fe₂O₅) and mayenite (12CaO·7Al₂O₃) are observed together with a few diffraction peaks due to brownmillerite (4CaO·Al₂O₃·Fe₂O₃). Structural changes of AlO₄ and FeO₄ tetrahedra were observed by FTIR, as shown in Fig. 2. A broad absorption peak due to Al-O stretching band of AlO₄ tetrahedra was observed at *ca*. 790 cm⁻¹ in the original glass [Fig. 2(a)] and shifted gradually towards higher wavenumbers up to 840 cm⁻¹, with increasing crystallization. This shift indicates a decrease in the mean Al-O bond length and an increase in the chemical bond strength or 'force constant'. The peak shift of the Al-O stretching band towards higher wave-

Fig. 1 XRD patterns of 60CaO-27Al₂O₃·13Fe₂O₃ after heat treatment at 750 °C for (a) 0, (b) 2000 and (c) 5000 min. The diffraction peaks labelled C, M and B refer to dicalcium ferrite, mayenite, and brownmillerite, respectively.

Fig. 2 FTIR absorption spectra of $60CaO \cdot 27Al_2O_3 \cdot 13Fe_2O_3$ after heat treatment at 750 °C for (a) 0, (b) 50, (c) 100, (d) 200, (e) 300, (f) 500, (g) 700, (h) 1000, (i) 1500, (j) 2000, (k) 3000, (l) 4000 and (m) 5000 min

Fig. 3 ⁵⁷Fe Mössbauer spectra of 60CaO·27Al₂O₃·13Fe₂O₃ after heat treatment at 750 °C for (a) 0, (b) 50, (c) 100, (d) 200, (e) 300, (f) 500, (g) 700, (h) 1000, (i) 1500, (j) 2000, (k) 3000, (l) 4000 and (m) 5000 min

number is ascribed to the formation of mayenite particles, as observed in a 60CaO·35Al₂O₃·5Fe₂O₃ glass.¹³ FTIR spectra of heat-treated samples [Fig. 2(b)–2(m)] showed a new peak at 580 cm⁻¹ ascribed to Fe³⁺(T_d) in Ca₂Fe₂O₅. It is known that Ca₂Fe₂O₅ crystals contain equal numbers of Fe³⁺(O_h) and Fe³⁺(T_d).^{14–20} Fig. 2 reveals that a local structural change of aluminoferrate glass could be detected after heat treatment for 50 min.

Precipitation of crystalline particles in the glassy phase was investigated by Mössbauer spectroscopy. While the Mössbauer spectrum of the original glass sample [Fig. 3(a)] was comprised of a quadrupole doublet arising from $\text{Fe}^{3+}(T_d)$, the spectra of heat-treated samples [Fig. 3(b)-3(m)] showed several peaks as a consequence of magnetic hyperfine structure (hfs). The absorption area arising from magnetic hyperfine structure, $A_{\rm hfs}$, increased linearly with the heat treatment time; e.g., from 44% [Fig. 3(b)] to 85% [Fig. 3(m)], as illustrated in Fig. 4. Fig. 3 shows that A_{hfs} increased at the expense of the quadrupole doublet which was originally located at 0.215 mm s⁻¹. Two types of doublet were observed in Fig. 3(b)–(m), the outer being assigned to $\text{Fe}^{3+}(T_d)$ occupying Al³⁺ sites of mayenite. Values of δ and Δ of the outer doublet were estimated to be 0.19 ± 0.01 and 1.59 ± 0.02 mm s⁻¹, respectively; δ for the outer doublet was equal to that of original glass, while \varDelta of the outer doublet was larger. A similar change in the Mössbauer spectra was observed when mayenite particles precipitated in 60CaO·35Al₂O₃·5Fe₂O₃ glass after heat treatment.¹³ The inner quadrupole doublet in Fig. 3(b)-(m) is assigned to paramagnetic $\hat{Fe}^{3+}(T_d)$ remaining in the glassy phase. The values of δ

Fig. 4 Change of the relative absorption area of the magnetic hyperfine structure (A_{hfs}) in the Mössbauer spectra of 60CaO·27Al₂O₃·13Fe₂O₃ after heat treatment at 750 °C (Fig. 3)

and Δ of the inner doublet were estimated to be 0.13 ± 0.01 and 0.89 ± 0.02 mm s⁻¹, respectively. Linewidths (Γ) were estimated to be 0.46 ± 0.02 mm s⁻¹ for both the outer and inner doublets, and were smaller than that of the original glass (0.60 mm s⁻¹). Smaller Γ reflects uniform Fe–O bond lengths and O–Fe–O bond angles. Mössbauer spectra of heat-treated aluminoferrate samples indicate that paramagnetic Fe³⁺(T_d) substitutes Al³⁺(T_d) in the glassy phase and mayenite particles.

It is considered that the size of the magnetic particles precipitated in the glassy phase is >10 nm, since magnetic hyperfine structure (hfs) is not generally observed when the mean diameter of the magnetic particles is <10 nm.²¹ A linear increase of A_{hfs} (Fig. 4) reflects the growth of magnetic particles of Ca2Fe2O5. The hfs was analyzed as two sextets: one arising from $Fe^{3+}(O_h)$ with a larger internal magnetic field (H_{int}) of 45 T and the other from $\overline{Fe}^{3+}(T_d)$ with H_{int} of 39 T. Values of δ for the sextets arising from $\mathrm{Fe}^{3+}(O_{\rm h})$ and $\mathrm{Fe}^{3+}(T_{\rm d})$ were estimated to be 0.38 ± 0.02 and 0.21 ± 0.02 mm s⁻¹, respectively, reflecting a high degree of covalency of the Fe³⁺-O bonds. Values of Δ for Fe³⁺(O_h) and Fe³⁺(T_d) were estimated to be 0.61±0.02 and -0.36 ± 0.02 mm s⁻¹, respectively. Fig. 3 reveals that Fe³⁺ ions occupy both O_h and T_d sites in the nanocrystals of Ca₂Fe₂O₅, although they occupied tetrahedral NWF sites in the original glass. Larger Γ values of 0.72 ± 0.02 and $1.07 \pm 0.02 \text{ mm} \text{ s}^{-1}$ were obtained for $\text{Fe}^{3+}(O_h)$ and $\text{Fe}^{3+}(T_{d})$, respectively, because of the magnetic relaxation effect and also because $Al^{3+}(T_d)$ substituted $Fe^{3+}(T_d)$ in the Ca₂Fe₂O₅ particles. Substitution of Al3+ for Fe3+ in Ca2Fe2O5 particles is discussed below.

It is known that in single crystals of dicalcium ferrite, $Ca_2Fe_2O_5$, there are equal numbers of $Fe^{3+}(O_h)$ and $Fe^{3+}(T_d)$, and all the magnetic spins are arranged in an antiparallel direction to each other.^{15,19} Smith²⁰ revealed that $Ca_2Fe_{2-x}Al_xO_5$ can be a solid solution when x is in the range 0-1.36. $Ca_2Fe_{2-x}Al_xO_5$ has an orthorhombic structure with space group *Pcmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* is the range $0 \le x \le 0.66$, whereas it has space group *Icmm* is the range $0 \le x \le 0.66$, whereas it has space group *Icmm* is the range $0 \le x \le 0.66$, whereas it has space group *Icmm* is the range $0 \le x \le 0.66$, whereas it has space group *Icmm* is the range $0 \le x \le 0.66$, whereas it has space group *Icmm* is the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has space group *Icmm* in the range $0 \le x \le 0.66$, whereas it has in nanocrystals of $Ca_2Fe_2O_5$, as observed in the solid solution of $Ca_2Fe_{2-x}Al_xO_5$.¹⁴ A $Ca_2Fe_{2-x}Al_xO_5$ solid solution with x =1.0 is termed brownmillerite. Grant and co-workers^{16,17} measured a Néel temperature (T_N) of 457 ± 2 °C for $Ca_2Fe_2O_5$, which decreased monotonously when Fe³⁺ was replaced by Ga³⁺ or Sc³⁺. From the temperature dependency of H_{int} in the Mössbauer spectra, Eibschütz *et al.*¹⁹ determined T_N of $Ca_2Fe_2O_5$ to be 452 °C. Values of H_{int} of 52 and 44 (±0.5) T obtained at room temperature decreased with increasing temperature and reached 0 T at T_N . Smaller H_{int} values of 45 and 39 T obtained in Fig. 3 are ascribed to the smaller size of the crystalline particles (nanocrystals) precipitated in the glassy phase. Grant¹⁸ determined the electric field gradient (e^2qQ) at the nuclear site of Fe³⁺ in single crystals of $Ca_2Fe_{2-x}Al_xO_5$ (x=0 or 1.0). He elucidated that the sign of electric field tensor along the *z*-axis, *i.e.*, V_{zz} , was positive at Fe³⁺(O_h) sites, but negative at Fe³⁺(T_d) sites. This is consistent with the sign of Δ obtained for the sextets in Fig. 3.

Ca₂Fe₂O₅ is known to be antiferromagnetic,^{15–19} as described above. The molar magnetic susceptibilities, χ_m , were measured for both the original glass and heat-treated samples. Fig. 5(a) illustrates $\chi_m T$ values of 60CaO·27Al₂O₃·13Fe₂O₃ glasses at several temperatures (*T*) between 78 and 298 K. Fig. 5(a) shows an almost linear curve reflecting paramagnetic Fe³⁺. This is consistent with the Mössbauer spectra of the 60CaO·27Al₂O₃·13Fe₂O₃ glass [Fig. 3(a)], which showed only one 'paramagnetic' quadrupole doublet. All the $\chi_m T$ values of the samples heat treated for 2000 [Fig. 5(b)] and 5000 min [Fig. 5(c)] at 750 °C were smaller than those of the original glass. The $\chi_m T$ values of heat-treated samples showed a downward bending at low temperature. These results are consistent with the precipitation of antiferromagnetic Ca₂Fe₂O₅ particles.

Values of $\chi_m T$ for heat-treated 25K₂O·65V₂O₅·10Fe₂O₃ samples are illustrated in Fig. 5(d)-5(f), for comparison with our samples. 'Paramagnetic' vanadate glass [Fig. 5(d)] showed an overall decrease of $\chi_m T$ values after heat treatment at 340 °C for 2100 [Fig. 5(e)] and 5000 min [Fig. 5(f)] due to antiferromagnetic interactions of $\text{Fe}^{3+}(T_d)$ ions.²² For $25K_2O \cdot 65V_2O_5 \cdot 10Fe_2O_3$ glass, a Curie-Weiss constant (θ) of -13 K was obtained from the intercept of the straight line in a plot of $1/\chi_m$ vs. T. The value of θ decreased from -13 to -93 and -108 K after heat treatment at 340 °C for 2100 and 5000 min, respectively, owing to the precipitation of KV_3O_8 particles. For the 60CaO 27Al2O3 13Fe2O3 glass sample [Fig. 5(a)], a plot of $1/\chi_m$ vs. T yielded a θ value of -50 K. The Curie-Weiss law could not be applied to heat-treated samples [Fig. 5(b), 5(c)] because the plot yielded a curve instead of a straight line. By using eqn. (3), the effective magnetic moment (μ_{eff}) of 60CaO·27Al₂O₃·13Fe₂O₃ glass was calculated to be 2.0 $\mu_{\rm B}$ at 298 K.

The value of μ_{eff} decreased linearly with decreasing tempera-

Fig. 5 $\chi_m T$ values of the 60CaO·27Al₂O₃·13Fe₂O₃ sample plotted vs. temperature (*T*), in which χ_m is the molar magnetic susceptibility. Heat treatment of the sample was conducted at 750 °C for (a) 0, (b) 2000 and (c) 5000 min. $\chi_m T$ values of the 25K₂O·65V₂O₅·10Fe₂O₃ sample²² after heat treatment at 340 °C for (d) 0, (e) 2100 and (f) 5000 min are shown for comparison.

1804 J. Mater. Chem., 1997, 7(9), 1801–1806

ture and reached 1.8 $\mu_{\rm B}$ at 80 K. The $\mu_{\rm eff}$ values of the 60CaO·27Al₂O₃·13Fe₂O₃ sample heat treated at 750 °C for 2000 and 5000 min were calculated to be 1.5–1.7 and 1.4–1.7 $\mu_{\rm B}$, respectively, in the same temperature region (80–298 K). It is noted that larger $\mu_{\rm eff}$ values of 5.5–5.8 $\mu_{\rm B}$ were obtained for 25K₂O·65V₂O₅·10Fe₂O₃ glass in the region 80–300 K.²² The $\mu_{\rm eff}$ values of vanadate samples heat treated at 340 °C for 2100 min were estimated to be 4.0–5.4 $\mu_{\rm B}$ in the region 80–298 K.²² After additional heat treatment at 340 °C for 3000 min, $\mu_{\rm eff}$ decreased to 3.9–5.2 $\mu_{\rm B}$ in the same temperature region. The decrease of $\mu_{\rm eff}$ from 5.5–5.8 to 3.9–5.2 $\mu_{\rm B}$ evidently shows an 'antiferromagnetic' interaction of Fe³⁺ spins in a 'paramagnetic' glass sample.

Fig. 6 illustrates a change of the IR transmittance of 60CaO·27Al₂O₃·13Fe₂O₃ samples after heat treatment at 760 °C for 0-1000 min. The IR transmittance (T) showed a systematic decrease from 26 to 8% along with the precipitation of dicalcium ferrite (Ca₂Fe₂O₅) and mayenite (12CaO·7Al₂O₃). Since the decrease of T is ascribed to scattering or reflection of the incident light, the decrease of T can be related with the fraction of crystalline particles precipitated in the glassy phase. Fig. 6 indicates that a distinct decrease of T was observed when the glass sample was heat treated for several minutes. This result is consistent with the Mössbauer spectra [Fig. 3(b)-3(m)], in which magnetic hyperfine structure of antiferromagnetic Ca₂Fe₂O₅ particles with а mean diameter > 10 nm appeared after heat treatment.

A Johnson–Mehl–Avrami (JMA) plot [eqn. (1)] was applied to a 60CaO·27Al₂O₃·13Fe₂O₃ sample in order to estimate the activation energy (E_a) and the mechanism of crystallization. An Avrami index (*n*) of 1.2 was obtained from the slope of the straight line in the JMA plot (Fig. 7), reflecting two- or three-

Fig. 6 IR transmission spectra of $60CaO \cdot 27Al_2O_3 \cdot 13Fe_2O_3$ measured at room temperature after heat treatment at $760 \degree C$ for (a) 0, (b) 15, (c) 20, (d) 30, (e) 60 and (f) 1000 min

Fig. 7 Johnson–Mehl–Avrami plot for 60CaO·27Al₂O₃·13Fe₂O₃ after heat treatment at (a) 740 °C, (b) 750 °C, (c) 760 °C and (d) 770 °C. n = 1.2, $E_a = 4.9 \pm 0.4$ eV.

Fig. 8 DTA curves of $60CaO \cdot 27Al_2O_3 \cdot 13Fe_2O_3$ glass recorded at heating rates of (a) 2, (b) 5, (c) 10 and (d) $15 \,^{\circ}C \, min^{-1}$

Fig. 9 Kissinger plot for (a) 60CaO·27Al₂O₃·13Fe₂O₃ ($E_a = 4.2 \pm 0.3$ eV) and (b) 60CaO·35Al₂O₃·5Fe₂O₃ ($E_a = 4.6 \pm 0.3$ eV) glasses

dimensional crystallization by a diffusion process. The value E_a was estimated to be 4.9 ± 0.4 eV from the Arrhenius plot of rate constants (k) obtained from the intercept of JMA plot. A comparable E_a of 4.3 ± 0.4 eV was previously obtained from the JMA plot of 60CaO·35Al₂O₃·5Fe₂O₃ glass,⁴ together with an Avrami index (n) of 1.5 which reflected three-dimensional crystallization by a diffusion process.

In order to obtain $E_{\rm a}$ values from Kissinger plots, measurements were DTA carried out for the 60CaO·27Al₂O₃·13Fe₂O₃ glass. As shown in Fig. 8, T_c showed a systematic increase from 769 to 783, 800 and 814 $^{\circ}\mathrm{C}$ when DTA was conducted at heating rates of 2, 5, 10 and 15 °C min⁻¹, respectively. The slope of the straight line in the Kissinger plot [Fig. 9(a)] yielded E_a of 4.2 ± 0.3 eV for the 60CaO·27Al₂O₃·13Fe₂O₃ glass. A Kissinger plot for a 60CaO·35Al₂O₃·5Fe₂O₃ glass is shown in Fig. 9(b) for comparison, which yielded E_a of 4.6 ± 0.3 eV. These values are equal to the values of E_a obtained from JMA plots of $60CaO \cdot 27Al_2O_3 \cdot 13Fe_2O_3$ glass (*i.e.* $4.9 \pm 0.4 \text{ eV}$) and $60CaO \cdot 35Al_2O_3 \cdot 5Fe_2O_3$ glass (*i.e.* $4.3 \pm 0.4 \text{ eV}^4$).

All the E_a values obtained for $60CaO \cdot 27Al_2O_3 \cdot 13Fe_2O_3$ and $60CaO \cdot 35Al_2O_3 \cdot 5Fe_2O_3$, *i.e.* $4.2 \pm 0.3 - 4.9 \pm 0.4$ eV, are comparable to Al-O single bond energy of 4.4 eV.²³ This result indicates that crystallization of calcium aluminoferrate glass is triggered by cleavage of Al-O bonds accompanying a precipitation of the particles of $12CaO \cdot 7Al_2O_3$ at an early stage. A similar type of crystallization mechanism was observed in $60CaO \cdot 39Ga_2O_3 \cdot Fe_2O_3^{-1}$ and $95TeO_2 \cdot 5Fe_2O_3$ glasses,² for which JMA plots yielded E_a of 3.3 ± 0.4 and 2.9 ± 0.4 eV, respectively. Since these values were comparable to the Ga-O (2.9 eV^{23}) and Te-O bond energies (3.0 eV^{23}), respectively, it was concluded that cleavage of Ga-O and Te-O bonds triggered the crystallization. Kissinger plots of $38Na_2O \cdot 62WO_3$

Fig. 10 Johnson–Mehl–Avrami plot for 60CaO-40Al₂O₃ heat treated at (a) 830, (b) 850 and (c) 860 °C. n = 1.5, $E_a = 5.6 \pm 0.4$ eV.

and $38Na_2O.61WO_3.Fe_2O_3$ glasses yielded E_a of 4.7 ± 0.3 and 2.6 ± 0.3 eV, respectively.¹¹ The former value was equal to the W-O single bond energy of 4.5 eV,²³ while the latter corresponded to the Fe-O single bond energy. This result indicates that cleavage of W-O and Fe-O bonds triggered the crystallization of iron-free and iron-containing tungstate glasses, respectively. In addition, comparable E_a values of $2.0\pm0.3-2.9\pm0.3$ eV were obtained from the Kissinger plots of $xK_2O(90-x)V_2O_5 \cdot 10Fe_2O_3$ glasses (x=20-30),²² which were much smaller than the V-O single bond energy of 3.9 eV.²³ These results indicate that crystallization of tungstate and vanadate glasses containing iron was triggered by cleavage of Fe–O bonds. Since the E_a of $4.2 \pm 0.3 - 4.9 \pm 0.4$ eV obtained for 60CaO·27Al₂O₃·13Fe₂O₃ and 60CaO·35Al₂O₃·5Fe₂O₃ glasses are much larger than the Fe-O bond energy, it is considered that cleavage of Fe-O bonds plays no significant role in the crystallization of aluminoferrate glass; Fe³⁺ behaves in the same manner as Al³⁺ throughout the crystallization process and occupies substitutional sites of Al3+ in the original glass and also in the particles of 12CaO·7Al₂O₃. Similarly, Al³⁺ substitutes Fe³⁺ in the particles of Ca₂Fe₂O₅, as confirmed from the Mössbauer spectra (Fig. 3).

A JMA plot in the IR-transmission method was applied to iron-free 60CaO·40Al₂O₃ glass in order to investigate the crystallization mechanism. The slope of the straight line (n) in the JMA plot (Fig. 10) was estimated to be 1.5, which reflected a three-dimensional crystallization proceeding from the surface to the bulk by a diffusion process. An Arrhenius plot of the kvalues obtained from JMA plots of 60CaO 40Al₂O₃ glass yielded an E_a value of 5.6 ± 0.3 eV. Also, a Kissinger plot in the DTA method was applied to 60CaO·40Al₂O₃ glass in order to estimate E_a . The T_c of 60CaO·40Al₂O₃ glass shifted from 926 to 940, 948 and 955 $^\circ\mathrm{C}$ when the heating rate (a) was increased from 5 to 10, 15 and 20 °C min-¹, respectively. The T_c values of 769-814 °C obtained for the 60CaO·27Al₂O₃·13Fe₂O₃ glass are much lower than those of 60CaO·40Al₂O₃ glass (926-955 °C), indicating that substi-

Fig. 11 Kissinger plot for 60CaO·40Al₂O₃ glass ($E_a = 6.0 \pm 0.3 \text{ eV}$)

tution of Fe³⁺ for Al³⁺ brings about a systematic lowering of $T_{\rm c}$ (and also $T_{\rm g}$) by more than 100 °C. A Kissinger plot obtained for the 60CaO·40Al₂O₃ glass is illustrated in Fig. 11. An E_a of 6.0 ± 0.3 eV was obtained from the slope of the straight line, which was equal to the E_a obtained from the JMA plot of Fig. 10. Since the $E_{\rm a}$ values of 5.6 ± 0.4 and 6.0 ± 0.3 eV are equal to a sum of the Al-O (4.4 eV^{23}) and Ca-O bond energies (1.4 eV^{23}) , it is considered that simultaneous cleavage of Al-O and Ca-O bonds takes place at an early stage of crystallization, accompanying the precipitation of 12CaO·7Al₂O₃ particles.

Conclusions

(1) Heat treatment of 60CaO·27Al₂O₃·13Fe₂O₃ glass resulted in a precipitation of nanocrystals of mayenite (12CaO·7Al₂O₃) and antiferromagnetic dicalcium ferrite (Ca₂Fe₂O₅), which caused a decrease of the effective magnetic moment (μ_{eff}) from 1.8–2.0 to 1.4–1.7 μ_{B} .

(2) $\operatorname{Fe}^{3+}(T_d)$ substitutes $\operatorname{Al}^{3+}(T_d)$ in $\operatorname{60CaO} \cdot 27 \operatorname{Al}_2 \operatorname{O}_3 \cdot$ $13Fe_2O_3$ glass, and Fe³⁺ behaves in the same manner as Al³ throughout the crystallization. The $Fe^{3+}(T_d)$ substitutes $Al^{3+}(T_d)$ in the particles of $12CaO \cdot 7Al_2O_3$, while $Al^{3+}(T_d)$ substitutes $Fe^{3+}(T_d)$ in Ca₂Fe₂O₅ particles.

(3) Internal magnetic fields (H_{int}) for Fe³⁺ (O_h) and Fe³⁺ (T_d) in $Ca_2Fe_2O_5$ particles were estimated to be 45 and 39 T, respectively. The H_{int} values were smaller than those of a Ca₂Fe₂O₅ single crystal because of a smaller particle size (ca. 10 nm).

(4) Precipitation of 12CaO·7Al₂O₃ and Ca₂Fe₂O₅ particles caused a decrease in the IR transmittance due to a scattering or reflection of the incident light. The IR-transmission method revealed that crystallization proceeded in a two- or threedimensional manner by a diffusion process.

(5) Activation energies (E_a) of 4.2 ± 0.3 and 4.9 ± 0.4 eV estimated for the crystallization of 60CaO·27Al₂O₃·13Fe₂O₃ glass were nearly equal to the Al-O bond energy of 4.4 eV, within the experimental error. This result indicates that cleavage of Al-O bonds triggered the formation of 12CaO·7Al₂O₃ particles containing iron.

(6) After prolonged heat treatment, Mössbauer spectra showed an increase in the absorption area of sextets due to Ca₂Fe₂O₅ particles at the expense of doublets. This reflects a migration of $\text{Fe}^{3+}(T_d)$ from $12\text{CaO·7Al}_2\text{O}_3$ and the glassy phase to Ca₂Fe₂O₅ particles.

(7) Values of E_a of 5.6 ± 0.4 and 6.0 ± 0.3 eV were obtained for the crystallization of $60CaO \cdot 40Al_2O_3$ glass. Since they are equal to a sum of Al-O (4.4 eV) and Ca-O bond energies (1.4 eV), it is concluded that simultaneous cleavage of Al-O and Ca-O bonds triggered the formation of 12CaO·7Al₂O₃.

One of the authors (T.N.) is indebted to Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports and Culture.

References

- T. Nishida, T. Ichii and Y. Takashima, J. Mater. Chem., 1992, 1 2.733.
- T. Nishida, S. Inoue and Y. Takashima, Bull. Chem. Soc. Jpn., 1992, 2 65, 1927.
- 3 T. Nishida, S. Kubuki and Y. Takashima, J. Non-Cryst. Solids, 1994, 177, 193.
- T. Nishida and Y. Takashima, Nucl. Instrum. Methods Phys. Res. 4 B, 1993, 76, 397.
- H. E. Kissinger, Anal. Chem., 1957, 29, 1702.
- T. Nishida, J. Non-Cryst. Solids, 1994, 177, 257. 6
- T. Nishida, J. Radioanal. Nucl. Chem., 1994, 182, 451.
- T. Nishida, Hyperfine Interact., 1995, 95, 23. 8 9
- T. Nishida, in Mössbauer Spectroscopy of Sophisticated Oxides, Akadémiai Kiadó, Budapest, 1997, ch. 2, pp. 27-87.
- T. Nishida, Z. Naturforsch., Teil A, 1996, 51, 620. 10
- 11 T. Nishida, M. Suzuki, S. Kubuki, M. Katada and Y. Maeda, J. Non-Cryst. Solids, 1996, 194, 23.
- G. Adams and J. H. Gibbs, J. Chem. Phys., 1965, 43, 139. 12
- T. Nishida, H. Ide, T. Shinmyozu, Y. Takashima and 13 Y. Matsumoto, Jpn. J. Appl. Phys., 1990, 29, 1293.
- F. Pobell and F. Wittmann, *Phys. Lett.*, 1965, **19**, 175. S. Geller, R. W. Grant, U. Gonser, H. Wiedersich and
- 15 G. P. Espinosa, Phys. Lett., 1966, 20, 115. 16
- R. W. Grant, H. Wiedersich, S. Geller, U. Gonser and G. P. Espinosa, J. Appl. Phys., 1967, 38, 1455.
 S. Geller, R. W. Grant, U. Gonser, H. Wiedersich and
- 17 G. P. Espinosa, Phys. Lett. A, 1967, 25, 722.
- 18 R. W. Grant, J. Chem. Phys., 1969, 51, 1156.
- 19 M. Eibschütz, U. Ganiel and S. Shtrikman, J. Mater. Sci., 1969, 4. 574.
- 20
- D. K. Smith, Acta Crystallogr., 1962, 15, 1146. N. N. Greenwood and T. C. Gibb, in Mössbauer Spectroscopy, 21 Chapman and Hall, London, 1971, ch. 10.
- 22 T. Nishida, J. Kubota, Y. Maeda, F. Ichikawa and T. Aomine, J. Mater. Chem., 1996, 6, 1889. 23
 - D. Chakravorty, in Modern Aspects of Solid State Chemistry, Plenum Press, New York, 1980, pp. 391-423.

Paper 7/02854G; Received 28th April 1997